3.195 \(\int x (1-a^2 x^2)^2 \tanh ^{-1}(a x) \, dx\)

Optimal. Leaf size=50 \[ \frac{a^3 x^5}{30}-\frac{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)}{6 a^2}-\frac{a x^3}{9}+\frac{x}{6 a} \]

[Out]

x/(6*a) - (a*x^3)/9 + (a^3*x^5)/30 - ((1 - a^2*x^2)^3*ArcTanh[a*x])/(6*a^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0370326, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {5994, 194} \[ \frac{a^3 x^5}{30}-\frac{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)}{6 a^2}-\frac{a x^3}{9}+\frac{x}{6 a} \]

Antiderivative was successfully verified.

[In]

Int[x*(1 - a^2*x^2)^2*ArcTanh[a*x],x]

[Out]

x/(6*a) - (a*x^3)/9 + (a^3*x^5)/30 - ((1 - a^2*x^2)^3*ArcTanh[a*x])/(6*a^2)

Rule 5994

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)
^(q + 1)*(a + b*ArcTanh[c*x])^p)/(2*e*(q + 1)), x] + Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan
h[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1]

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int x \left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x) \, dx &=-\frac{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)}{6 a^2}+\frac{\int \left (1-a^2 x^2\right )^2 \, dx}{6 a}\\ &=-\frac{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)}{6 a^2}+\frac{\int \left (1-2 a^2 x^2+a^4 x^4\right ) \, dx}{6 a}\\ &=\frac{x}{6 a}-\frac{a x^3}{9}+\frac{a^3 x^5}{30}-\frac{\left (1-a^2 x^2\right )^3 \tanh ^{-1}(a x)}{6 a^2}\\ \end{align*}

Mathematica [A]  time = 0.0230581, size = 93, normalized size = 1.86 \[ \frac{a^3 x^5}{30}+\frac{1}{6} a^4 x^6 \tanh ^{-1}(a x)-\frac{1}{2} a^2 x^4 \tanh ^{-1}(a x)+\frac{\log (1-a x)}{12 a^2}-\frac{\log (a x+1)}{12 a^2}-\frac{a x^3}{9}+\frac{1}{2} x^2 \tanh ^{-1}(a x)+\frac{x}{6 a} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(1 - a^2*x^2)^2*ArcTanh[a*x],x]

[Out]

x/(6*a) - (a*x^3)/9 + (a^3*x^5)/30 + (x^2*ArcTanh[a*x])/2 - (a^2*x^4*ArcTanh[a*x])/2 + (a^4*x^6*ArcTanh[a*x])/
6 + Log[1 - a*x]/(12*a^2) - Log[1 + a*x]/(12*a^2)

________________________________________________________________________________________

Maple [A]  time = 0.028, size = 77, normalized size = 1.5 \begin{align*}{\frac{{a}^{4}{\it Artanh} \left ( ax \right ){x}^{6}}{6}}-{\frac{{a}^{2}{\it Artanh} \left ( ax \right ){x}^{4}}{2}}+{\frac{{\it Artanh} \left ( ax \right ){x}^{2}}{2}}+{\frac{{x}^{5}{a}^{3}}{30}}-{\frac{{x}^{3}a}{9}}+{\frac{x}{6\,a}}+{\frac{\ln \left ( ax-1 \right ) }{12\,{a}^{2}}}-{\frac{\ln \left ( ax+1 \right ) }{12\,{a}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-a^2*x^2+1)^2*arctanh(a*x),x)

[Out]

1/6*a^4*arctanh(a*x)*x^6-1/2*a^2*arctanh(a*x)*x^4+1/2*arctanh(a*x)*x^2+1/30*x^5*a^3-1/9*x^3*a+1/6*x/a+1/12/a^2
*ln(a*x-1)-1/12/a^2*ln(a*x+1)

________________________________________________________________________________________

Maxima [A]  time = 0.95139, size = 62, normalized size = 1.24 \begin{align*} \frac{{\left (a^{2} x^{2} - 1\right )}^{3} \operatorname{artanh}\left (a x\right )}{6 \, a^{2}} + \frac{3 \, a^{4} x^{5} - 10 \, a^{2} x^{3} + 15 \, x}{90 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*x^2+1)^2*arctanh(a*x),x, algorithm="maxima")

[Out]

1/6*(a^2*x^2 - 1)^3*arctanh(a*x)/a^2 + 1/90*(3*a^4*x^5 - 10*a^2*x^3 + 15*x)/a

________________________________________________________________________________________

Fricas [A]  time = 1.90612, size = 154, normalized size = 3.08 \begin{align*} \frac{6 \, a^{5} x^{5} - 20 \, a^{3} x^{3} + 30 \, a x + 15 \,{\left (a^{6} x^{6} - 3 \, a^{4} x^{4} + 3 \, a^{2} x^{2} - 1\right )} \log \left (-\frac{a x + 1}{a x - 1}\right )}{180 \, a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*x^2+1)^2*arctanh(a*x),x, algorithm="fricas")

[Out]

1/180*(6*a^5*x^5 - 20*a^3*x^3 + 30*a*x + 15*(a^6*x^6 - 3*a^4*x^4 + 3*a^2*x^2 - 1)*log(-(a*x + 1)/(a*x - 1)))/a
^2

________________________________________________________________________________________

Sympy [A]  time = 2.18522, size = 68, normalized size = 1.36 \begin{align*} \begin{cases} \frac{a^{4} x^{6} \operatorname{atanh}{\left (a x \right )}}{6} + \frac{a^{3} x^{5}}{30} - \frac{a^{2} x^{4} \operatorname{atanh}{\left (a x \right )}}{2} - \frac{a x^{3}}{9} + \frac{x^{2} \operatorname{atanh}{\left (a x \right )}}{2} + \frac{x}{6 a} - \frac{\operatorname{atanh}{\left (a x \right )}}{6 a^{2}} & \text{for}\: a \neq 0 \\0 & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a**2*x**2+1)**2*atanh(a*x),x)

[Out]

Piecewise((a**4*x**6*atanh(a*x)/6 + a**3*x**5/30 - a**2*x**4*atanh(a*x)/2 - a*x**3/9 + x**2*atanh(a*x)/2 + x/(
6*a) - atanh(a*x)/(6*a**2), Ne(a, 0)), (0, True))

________________________________________________________________________________________

Giac [A]  time = 1.1609, size = 77, normalized size = 1.54 \begin{align*} \frac{{\left (a^{2} x^{2} - 1\right )}^{3} \log \left (-\frac{a x + 1}{a x - 1}\right )}{12 \, a^{2}} + \frac{3 \, a^{4} x^{5} - 10 \, a^{2} x^{3} + 15 \, x}{90 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*x^2+1)^2*arctanh(a*x),x, algorithm="giac")

[Out]

1/12*(a^2*x^2 - 1)^3*log(-(a*x + 1)/(a*x - 1))/a^2 + 1/90*(3*a^4*x^5 - 10*a^2*x^3 + 15*x)/a